Department of Mathematics

S.Y.B.Sc. Semester II Paper I MT 221 Linear Algebra

Practical 1: Vector Space, Subspace, Linear Dependence \& Independence

Date: 03/01/2019

Vector Space: (8 Marks Questions)

1. Show that the set $V=\{f \mid f$ is an even function $\}$ with usual addition and scalar multiplication is a vector space.
(Apr' 18)
2. Show that the set $V=\{(x, y, 0) \mid x, y \in \mathbb{R}\}$ with usual addition and scalar multiplication is a vector space.
(Apr' 18)

Subspace (4 Marks Questions)

3. Show that the following subsets are subspaces of \mathbb{R}^{3} under usual addition and scalar multiplication.
a) $W=\{(x, y, z) \mid x-y+z=0\}$
(Apr' 18)
b) $W=\{(x, y, z) \mid 2 x+3 y-z=0\}$
4. Determine whether $W=\{(x, y, z) \mid x+y+z=0\}$ is a subspace of \mathbb{R}^{3}. (Apr' 18, Apr' 17, Apr'16, Apr'15)
5. Let $M_{2}(\mathbb{R})$ be real vector space. Let $W=\left\{A \in M_{2}(\mathbb{R}) \mid A\right.$ is invertible matrix $\}$. Is W a subspace of $M_{2}(\mathbb{R})$? Justify. (Apr' 18)
6. Let $V=M_{3}(\mathbb{R})$ i.e. the set of all 3×3 matrices with real entries be real vector space. Let $W_{1}=\left\{A \in M_{3}(\mathbb{R}) \mid A^{t}=A\right\}$, $W_{2}=\left\{A \in M_{3}(\mathbb{R}) \mid A^{t}=-A\right\}$ Show that W_{1} and W_{2} are subspaces of $M_{3}(\mathbb{R})$. (Apr' 18)
7. Let V be a vector space of all real valued functions defined on $[0,1]$. Let $W=\left\{f \left\lvert\, f\left(\frac{1}{2}\right)=0\right.\right\}$ be the subset of V . Show that W is a subspace of V . (Apr' 15)

Linear Dependence \& Independence(4 Marks Questions)

8. Let $\left\{\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right\}$ be linearly independent set of vectors in a vector space V . Let $\bar{v}_{1}=\bar{u}_{1}, \bar{v}_{2}=\bar{u}_{1}+\bar{u}_{2}, \bar{v}_{3}=\bar{u}_{1}+\bar{u}_{2}+\bar{u}_{3}$. Prove that $\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right\}$ is linearly independent set.(Apr' 18)
9. Show that the set $\{(1,1,0),(1,1,1),(1,0,0)\}$ is linearly independent. (Apr' 18, Apr' 17, Apr' 16, Apr' 15)
10. Determine whether the set $\{(1,2,-3),(2,5,7),(3,7,10)\}$ is linearly independent.
(Apr' 17, Apr' 16, Apr' 15)
11. Show that $B=\left\{1+2 x+x^{2}, 2+x, 1-x+2 x^{2}\right\}$ is linearly independent. (Apr' 17)
12. Show that the vectors $\bar{u}_{1}=e^{x}, \bar{u}_{2}=\cos x, \bar{u}_{3}=\sin x$ are linearly independent in the function space. (Apr' 16 , Apr' 15)
S.N.J.B.'s K.K.H.A. Arts, S.M.G.L. Commerce \& S.P.H.J. Science College, Chandwad

Department of Mathematics

S.Y.B.Sc. Semester II Paper I MT 221 Linear Algebra

Practical 2: Basis, Dimension, Row Space, Column Space \& Null

Date: 17/01/2019

1. Show that $B=\left\{1+2 x-3 x^{2}, 1-3 x+2 x^{2}, 2-x+5 x^{2}\right\}$ is basis for real vector space P_{2}. Also find coordinate vector of $1+2 x+3 x^{2}$ relative to this basis.
(8 marks, Apr.18)
2. Determine the dimension and basis for the solution space of the system.

$$
\begin{gathered}
x_{1}+2 x_{2}-4 x_{3}+3 x_{4}-x_{5}=0 \\
x_{1}+2 x_{2}-2 x_{3}+2 x_{4}+x_{5}=0 \\
2 x_{1}+4 x_{2}-2 x_{3}+3 x_{4}+4 x_{5}=0
\end{gathered}
$$

(8 marks, Apr.16)
3. Determine whether the set
i. $\quad S=\{(1,2,-3),(1,-3,2),(2,-1,5)\}$
(4 marks, Apr.16)
ii. $\quad S=\{(-1,2,3),(2,5,7),(3,7,10)\}$
(4 marks, Apr.18)
are basis for \mathbb{R}^{3}.
4. Show that
i. $B=\{(3,0,-6),(-4,1,7),(-2,1,5)\} \quad$ (4 marks, Apr.16)
ii. $\quad B=\{(1,0,0),(1,1,0),(1,1,1)\} \quad$ (4 marks, Apr.17)
iii. $\quad B=\{(1,1,1),(0,1,1),(0,0,1)\}$
(4 marks, Apr.17)
are basis for vector space \mathbb{R}^{3}.
5. Let $\bar{v}_{1}=(1,2,1), \bar{v}_{2}=(2,9,0), \bar{v}_{3}=(3,3,4)$. Show that the set $S=\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}. Find the coordinate vector of $\bar{v}=(5,-1,9)$ w.r.t. S.
(4 marks, Apr.18)
6. Let $\bar{v}_{1}=(1,2,3), \bar{v}_{2}=(2,3,1), \bar{v}_{3}=(3,1,2)$. Show that the set $S=\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}. Find the coordinate vector of $\bar{v}=(9,4,11)$ w.r.t. S.
(4 marks, Apr.18)
7. Show that $\left\{1+x+x^{2},-1+x, 1+2 x+x^{2}\right\}$ is basis for real vector space P_{2}.
(4 marks, Apr.18)
8. Show that the set $\left\{1, t+1, t^{2}+1\right\}$ is a basis for P_{2}. Express $p(t)=t^{2}+t+1$ as a linear combination of vectors in that basis.
(4 marks,Apr.18)
9. Let $S=\left\{e_{1}, e_{2}, e_{1}+e_{2}\right\}$ where $e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)$. Find $L(S)$.
(4 marks, Apr.16)
10. Show that $S=\{(1,1,0),(1,1,1),(1,0,0)\}$ span \mathbb{R}^{3}.
11. Express $\bar{w}=(5,-12,3)$ as a linear combination of vectors $\bar{v}_{1}=(1,2,3), \bar{v}_{2}=$ $(-4,5,6), \bar{v}_{3}=(7,-8,9)$.
(4 marks, Apr.17)
12. Let $W=\{(x, y, z, w) \mid y+z=0, x=w\}$ be a subspace of \mathbb{R}^{4}. Find the basis and dimension of \mathbb{R}^{4}. (4 marks, Apr.15, Apr.16)
13. Let $V=M_{3}(\mathbb{R})$ the set of all 3×3 matrices with real entries be real vector space. Let $W_{1}=\left\{A \in M_{3}(\mathbb{R}) \mid A^{t}=A\right\}, W_{2}=\left\{A \in M_{3}(\mathbb{R}) \mid A^{t}=-A\right\}$ be subspaces of V . Find basis and dimension of W_{1} and W_{2}.
(4 marks, Apr.18)
14. Find basis for the subspace spanned by the vectors $(1,1,1),(1,2,3)$ and $(2,3,5)$ of \mathbb{R}^{3} 。
(4 marks, Apr.15, Apr.16)
15. Find basis and dimension of row space of matrix
(4 marks, Apr.17)
16. Find a basis for the null space, row space and column space of
(8 marks, Apr.18)

Department of Mathematics

S.Y.B.Sc. Semester II Paper I MT-221Linear Algebra

Practical 4: LINEAR TRANSFORMATION I

Date: 21/02/2019

1. Find the range and kernel of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined as $\mathrm{T}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}x+z \\ x+y+2 z \\ 2 x+y+3 z\end{array}\right]$. Also find the rank and nullity of T .
(Apr. 15, 8 Marks)
2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map with $T \overline{e_{1}}=\overline{e_{2}}, \mathrm{~T} \overline{e_{2}}=\overline{e_{3}}$ and $T \overline{e_{3}}=0$, where $\overline{e_{1}}=(1,0,0), \overline{e_{2}}=(0,1,0)$ and $\overline{e_{3}}=(0,0,1)$. Show that $T \neq 0, T^{2} \neq$ 0 but $T^{3}=0$.
(Apr. 18, 4 Marks)
3. Find domain and codomain of $T_{2} \circ T_{1}$ and find $T_{2} \circ T_{1}(x, y)$ if $T_{1}(x, y)=$ $(2 x, 3 y), T_{2}(x, y)=(x-y, x+y)$.
(Apr. 18, 4 Marks)
4. Let $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation given by

$$
T_{1}(x, y)=(x+y, y), T_{2}(x, y)=(2 x, y, x+y)
$$

Find formula for $T_{2} \circ T_{1}$.
(Apr. 16, 4 Marks)
5. Compute $T_{2} \circ T_{1}(x, y, z)$ if $T_{1}(x, y, z)=(x-y, y+z, x-z)$, $T_{2}(x, y, z)=(0, x+y+z) . \quad$ (Apr. 15, 16, 18, 4 Marks)
6. Verify rank-nullity theorem for linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T(x, y, z)=(x+y-z, x-2 y+z,-2 x-2 y+2 z)$.
(Apr. 15, 16, 17, 18, 8 Marks)
7. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T(x, y, z)=(x+y+2 z, x+z, 2 x+y+3 z)$. Find Kernel and image of T. (Apr. 16, 8 Marks)
8. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(x, y, z)=(x+3 y+z, x+2, x+y-z)$. Determine whether T is a linear transformation.
(Apr. 17, 4 Marks)
9. If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by $T(x, y, z)=(2 x-3 y-3 z, x+z, y+z)$ then show that T is a linear transformation.
(Apr. 17,18, 4 Marks)
10. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $T(x, y, z)=$ $(x, y, x+y+z)$. Find $\operatorname{Ker}(\mathrm{T})$.
(Apr. 15, 17, 4 Marks)
11. Find rank of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T(x, y, z)=$ $(x+y-3 z, 2 x-2 y+z,-2 x-2 y+6 z)$.
(Apr. 17, 4 Marks)
12. Let $A=\left[\begin{array}{rrrrr}-1 & 2 & 1 & 3 & 4 \\ 0 & 0 & 2 & -1 & 0\end{array}\right]$ and let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T_{A}(X)=A X$. Find $T(1,0,-1,3,0) . \quad$ (Apr. 16, 4 Marks)
13. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map such that $T(1,1)=(0,2), T(1,-1)=(2,0)$. Find formula for $T(x, y)$, hence compute $T(-2,1)$.
14. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by the formula $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(4 x_{1}+x_{2}-2 x_{3}-3 x_{4}, 2 x_{1}+x_{2}+x_{3}-4 x_{4}, 6 x_{1}-9 x_{3}+9 x_{4}\right)$. Show that $(3,-8,2,0) \in \operatorname{KerT}$ and $(0,0,6) \in R(T)$.

Department of Mathematics

S.Y.B.Sc. Semester II Paper I MT-221Linear Algebra

Practical 5: LINEAR TRANSFORMATION II

Date: 28/2/2019

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be multiplication by a matrix A. Determine whether T has an inverse; if so, find $T^{-1}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ where $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.
2. For the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T(x, y, z)=(2 x+y-z, 3 x-2 y+4 z)
$$

Find the matrix A of T with respect to bases $B_{1}=\{(1,1,1),(1,1,0),(1,0,0)\}$ and $B_{2}=\{(1,3),(1,4)\}$ of \mathbb{R}^{3} and \mathbb{R}^{2} respectively.
3. Find the matrix of linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T(x, y, z)=(-x-y+z, x-4 y+z, 2 x-5 y)
$$

with respect to the standard basis of \mathbb{R}^{3} and \mathbb{R}^{3}.
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $T(x, y)=(x+y, x+y)$ find matrix of T with respect to standard basis of \mathbb{R}^{2}.
5. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
T(x, y, z)=(x+y+z, y+z)
$$

Find matrix A of T with respect to standard bases of \mathbb{R}^{3} and \mathbb{R}^{2} respectively.
6. Find the basis for the kernel of the linear transformation $T: P_{2} \rightarrow P_{3}$ given by $T(p(x))=x \cdot p(x)$.

